Legendrian Cycles and Curvatures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314676" target="_blank" >RIV/00216208:11320/15:10314676 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s12220-014-9506-1" target="_blank" >http://dx.doi.org/10.1007/s12220-014-9506-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12220-014-9506-1" target="_blank" >10.1007/s12220-014-9506-1</a>
Alternative languages
Result language
angličtina
Original language name
Legendrian Cycles and Curvatures
Original language description
Properties of general Legendrian cycles acting in are studied. In particular, we give short proofs for certain uniqueness theorems with respect to the projections on the first and second component of such currents: In general, is determined by its restriction to the Gauss curvature form-this result goes back to J. Fu-and in the full-dimensional case also by the restriction to the surface area form. As a tool a version of the Constancy theorem for Lipschitz submanifolds is shown.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometric Analysis
ISSN
1050-6926
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
2133-2147
UT code for WoS article
000365472700001
EID of the result in the Scopus database
2-s2.0-84948385306