HIGHER DIFFERENTIABILITY FOR SOLUTIONS OF A CLASS OF PARABOLIC SYSTEMS WITH L-1,L-theta- DATA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317003" target="_blank" >RIV/00216208:11320/15:10317003 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/qmath/hau031" target="_blank" >http://dx.doi.org/10.1093/qmath/hau031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/qmath/hau031" target="_blank" >10.1093/qmath/hau031</a>
Alternative languages
Result language
angličtina
Original language name
HIGHER DIFFERENTIABILITY FOR SOLUTIONS OF A CLASS OF PARABOLIC SYSTEMS WITH L-1,L-theta- DATA
Original language description
In the paper we consider very weak (or Q. Stampacchia) solutions to the Cauchy-Dirichlet problem for linear parabolic system with coefficients that are uniformly Hoelder in space variables and are bounded with vanishing mean oscillation in space and time. The right hand side belongs to L^{1,theta} space.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Journal of Mathematics
ISSN
0033-5606
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
659-676
UT code for WoS article
000355933800015
EID of the result in the Scopus database
2-s2.0-84930750705