The Radon transform between monogenic and generalized slice monogenic functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317154" target="_blank" >RIV/00216208:11320/15:10317154 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00208-015-1182-3" target="_blank" >http://dx.doi.org/10.1007/s00208-015-1182-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-015-1182-3" target="_blank" >10.1007/s00208-015-1182-3</a>
Alternative languages
Result language
angličtina
Original language name
The Radon transform between monogenic and generalized slice monogenic functions
Original language description
In Bures et al. (Elements of quaternionic analysis and Radon transform, 2009), the authors describe a link between holomorphic functions depending on a parameter and monogenic functions defined on using the Radon and dual Radon transforms. The main aim of this paper is to further develop this approach. In fact, the Radon transform for functions with values in the Clifford algebra is mapping solutions of the generalized Cauchy-Riemann equation, i.e., monogenic functions, to a parametric family of holomorphic functions with values in and, analogously, the dual Radon transform is mapping parametric families of holomorphic functions as above to monogenic functions. The parametric families of holomorphic functions considered in the paper can be viewed as ageneralization of the so-called slice monogenic functions. An important part of the problem solved in the paper is to find a suitable definition of the function spaces serving as the domain and the target of both integral transforms.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
—
Volume of the periodical
363
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
733-752
UT code for WoS article
000363037800002
EID of the result in the Scopus database
2-s2.0-84945462049