Local-solution approach to quasistatic rate-independent mixed-mode delamination
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317209" target="_blank" >RIV/00216208:11320/15:10317209 - isvavai.cz</a>
Alternative codes found
RIV/61388998:_____/15:00443371
Result on the web
<a href="http://dx.doi.org/10.1142/S0218202515500347" target="_blank" >http://dx.doi.org/10.1142/S0218202515500347</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202515500347" target="_blank" >10.1142/S0218202515500347</a>
Alternative languages
Result language
angličtina
Original language name
Local-solution approach to quasistatic rate-independent mixed-mode delamination
Original language description
The model of quasistatic rate-independent evolution of a delamination at small strains in the so-called mixed mode, i.e. distinguishing opening (Mode I) from shearing (Mode II), devised in [Delamination and adhesive contact models and their mathematicalanalysis and numerical treatment, Chap. 9, in Mathematical Methods and Models in Composites, ed. V. Mantic (Imperial College Press, 2014), pp. 349-400; and in Quasistatic mixedmode delamination model, Discrete Contin. Dynam. Syst. Ser. S 6 (2013) 591-610], is rigorously analyzed in the context of a concept of stress-driven local solutions. The model has separately convex stored energy and is associative, namely the one-homogeneous potential of dissipative forces driving the delamination depends only onrates of internal parameters. An efficient fractional-step-type semi-implicit discretization in time is shown to converge to (specific, stress-driven like) local solutions that may approximately obey the maximum-dissipation principle. Mak
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
7
Country of publishing house
SG - SINGAPORE
Number of pages
28
Pages from-to
1337-1364
UT code for WoS article
000352861500004
EID of the result in the Scopus database
2-s2.0-84928622466