Cubic plane graphs on a given point set
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317337" target="_blank" >RIV/00216208:11320/15:10317337 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.comgeo.2014.06.001" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2014.06.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2014.06.001" target="_blank" >10.1016/j.comgeo.2014.06.001</a>
Alternative languages
Result language
angličtina
Original language name
Cubic plane graphs on a given point set
Original language description
Let P be a set of n>3 points in the plane that is in general position and such that n is even. We investigate the problem whether there is a (0-, 1- or 2-connected) cubic plane straight-line graph on P. No polynomial-time algorithm is known for this problem. Based on a reduction to the existence of certain diagonals of the boundary cycle of the convex hull of P, we give the first polynomial-time algorithm that checks for 2-connected cubic plane graphs; the algorithm is constructive and runs in time O (n^3). We also show which graph structure can be expected when there is a cubic plane graph on P; e.g., a cubic plane graph on P implies a connected cubic plane graph on P, and a 2-connected cubic plane graph on P implies a 2-connected cubic plane graph onP that contains the boundary cycle of P. We extend the above algorithm to check for arbitrary cubic plane graphs in time O (n^3).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geometry: Theory and Applications
ISSN
0925-7721
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000342877700001
EID of the result in the Scopus database
2-s2.0-84903162265