Classification of 4-dimensional homogeneous weakly einstein manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317473" target="_blank" >RIV/00216208:11320/15:10317473 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-015-0159-4" target="_blank" >http://dx.doi.org/10.1007/s10587-015-0159-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-015-0159-4" target="_blank" >10.1007/s10587-015-0159-4</a>
Alternative languages
Result language
angličtina
Original language name
Classification of 4-dimensional homogeneous weakly einstein manifolds
Original language description
Y.Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A.Gray and T. J.Willmore in the context of mean-value theorems in Riemannian geometry. The dimension 4 is the most interesting case, where each Einstein space is weakly Einstein. The original authors gave two examples of homogeneous weakly Einstein manifolds (depending on one, or two parameters, respectively) which are not Einstein. The goal of this paper is to prove that these examples are the onlyexisting examples. We use, for this purpose, the classification of 4-dimensional homogeneous Riemannian manifolds given by L.B,rard Bergery and, also, the basic method and many explicit formulas from our previous article with different t
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
39
Pages from-to
21-59
UT code for WoS article
000352820000002
EID of the result in the Scopus database
2-s2.0-84938081114