All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph Cores via Universal Completability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317805" target="_blank" >RIV/00216208:11320/15:10317805 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S157106531500092X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S157106531500092X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.endm.2015.06.046" target="_blank" >10.1016/j.endm.2015.06.046</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph Cores via Universal Completability

  • Original language description

    A framework for a graph G=(V,E), denoted G(p), consists of an assignment of real vectors p=(p1,p2,...,p|V|) to its vertices. A framework G(p) is called universally completable if for any other framework G(q) that satisfies piTpj=qiTqj for i=j and for edges ij there exists an isometry U such that Uqi=pi for all i. A graph is called a core if all its endomorphisms are automorphisms. In this work we identify a new sufficient condition for showing that a graph is a core in terms of the universal completability of an appropriate framework for the graph. To use this condition we develop a method for constructing universally completable frameworks based on the eigenvectors for the smallest eigenspace of the graph. This allows us to recover the known result that the Kneser graph Kn:r and the q-Kneser graph qKn:r are cores for n > = 2r+1. Our proof is simple and does not rely on the use of an Erdős-Ko-Rado type result as do existing proofs. Furthermore, we also show that a new family of graphs

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Volume of the periodical

    49

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    337-344

  • UT code for WoS article

  • EID of the result in the Scopus database