All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318376" target="_blank" >RIV/00216208:11320/15:10318376 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4931474" target="_blank" >http://dx.doi.org/10.1063/1.4931474</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4931474" target="_blank" >10.1063/1.4931474</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties

  • Original language description

    The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t) log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties)and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

  • Volume of the periodical

    143

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

    000361843900022

  • EID of the result in the Scopus database

    2-s2.0-84942627400