Transformation and aggregation preprocessing for top-k recommendation GAP rules induction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318814" target="_blank" >RIV/00216208:11320/15:10318814 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-1417/paper18.pdf" target="_blank" >http://ceur-ws.org/Vol-1417/paper18.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Transformation and aggregation preprocessing for top-k recommendation GAP rules induction
Original language description
In this paper we describe the KTIML team approach to RuleML 2015 Rule-based Recommender Systems for the Web of Data Challenge Track. The task is to estimate the top 5 movies for each user separately in a semantically enriched MovieLens 1M dataset. We have three results. Best is a domain specif-ic method like "recommend for all users the same set of movies from Spiel-berg". Our contributions are domain independent data mining methods tailored for top-k which combine second order logic data aggregations and transfor-mations of metadata, especially 5003 open data attributes and general GAP rules mining methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Challenge+DC@RuleML 2015
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
CEUR
Place of publication
Berlin
Event location
Berlín
Event date
Aug 2, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—