Yet more planning efficiency: Finite-domain state-variable reformulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10319126" target="_blank" >RIV/00216208:11320/15:10319126 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/0952813X.2014.993504" target="_blank" >http://dx.doi.org/10.1080/0952813X.2014.993504</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/0952813X.2014.993504" target="_blank" >10.1080/0952813X.2014.993504</a>
Alternative languages
Result language
angličtina
Original language name
Yet more planning efficiency: Finite-domain state-variable reformulation
Original language description
AI Planning is inherently hard and hence it is desirable to derive as much information as we can from the structure of the planning problem and let this information be exploited by a planner. Many recent planners use the finite-domain state-variable representation of the problem instead of the classical propositional representation. However, most planning problems are still specified in the propositional representation due to the widespread modelling language planning domain definition language and it is hard to generate an efficient state-variable representation from the propositional model. In this article, we investigate various methods for automated generation of efficient state-variable representations from the propositional representation and wepropose a novel approach - constructed as a combination of existing techniques - that utilises the structural information from the goal and the initial state. We perform an exhaustive experimental evaluation of methods, planning systems a
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Experimental and Theoretical Artificial Intelligence
ISSN
0952-813X
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
34
Pages from-to
543-576
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84940580966