On geodesic dynamics in deformed black-hole fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10321654" target="_blank" >RIV/00216208:11320/15:10321654 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-18335-0_17" target="_blank" >http://dx.doi.org/10.1007/978-3-319-18335-0_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-18335-0_17" target="_blank" >10.1007/978-3-319-18335-0_17</a>
Alternative languages
Result language
angličtina
Original language name
On geodesic dynamics in deformed black-hole fields
Original language description
"Almost all" seems to be known about isolated stationary black holes in asymptotically flat space-times and about the behaviour of test matter and fields in their backgrounds. The black holes likely present in galactic nuclei and in some X-ray binaries are commonly being represented by the Kerr metric, but actually they are not isolated (they are detected only thanks to a strong interaction with the surroundings), they are not stationary (black-hole sources are rather strongly variable) and they also probably do not live in an asymptotically flat universe. Such "perturbations" may query the classical black-hole theorems (how robust are the latter against them?) and certainly affect particles and fields around, which can have observational consequences.In the present contributionwe examine howthe geodesic structure of the static and axially symmetric black-hole space-time responds to the presence of an additional matter in the form of a thin disc or ring. We use several different metho
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10625S" target="_blank" >GA14-10625S: General relativistic fields of compact astrophysical sources</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Equations of Motion in Relativistic Gravity
ISBN
978-3-319-18334-3
Number of pages of the result
26
Pages from-to
561-586
Number of pages of the book
840
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—