Computer simulation of pedestrian crowds using a macroscopic model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10332263" target="_blank" >RIV/00216208:11320/15:10332263 - isvavai.cz</a>
Result on the web
<a href="https://docs.google.com/uc?id=0B3t14Ql_Xo2tRmUxYlk0b0tnU2M&export=download" target="_blank" >https://docs.google.com/uc?id=0B3t14Ql_Xo2tRmUxYlk0b0tnU2M&export=download</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computer simulation of pedestrian crowds using a macroscopic model
Original language description
A macroscopic model describing the pedestrian flow consists of the continuity equation and momentum equation of fluid dynamics. Specifying the social and pressure forces in the momentum equation, we get the first order hyperbolic system of partial differential equations with a source term. We use the mathematical similarity with the shallow water equations (SWE) in the numerical solution by the finite volume method. The splitting technique is applied which leads to a combination of the finite volume method for the hyperbolic problem with the numerical solution of the system of ordinary differential equations. Additionally, the solution of the so-called eikonal equation plays an important role here. Such a solution determines the density dependent direction of pedestrian motion. The algorithm giving the time evolution of the density and velocity of pedestrians in the two-dimensional domain is described. The practical application of the algorithm for the evacuation of the 2D hall for various configurations of obstacles near to the exit is presented.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BK - Liquid mechanics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applied Natural Sciences 2015
ISBN
978-80-8105-729-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
125-130
Publisher name
University of SS. Cyril and Methodius in Trnava
Place of publication
Trnava
Event location
Jasná, Low Tatras, Slovak Republic
Event date
Sep 30, 2015
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—