All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High solar cycle spectral variations inconsistent with stratospheric ozone observations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10318471" target="_blank" >RIV/00216208:11320/16:10318471 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2640.html#access" target="_blank" >http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2640.html#access</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/ngeo2640" target="_blank" >10.1038/ngeo2640</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High solar cycle spectral variations inconsistent with stratospheric ozone observations

  • Original language description

    Solar variability can influence surface climate, for example by affecting the mid-to-high-latitude surface pressure gradient associated with the North Atlantic Oscillation. One key mechanism behind such an influence is the absorption of solar ultraviolet (UV) radiation by ozone in the tropical stratosphere, a process that modifies temperature and wind patterns and hence wave propagation and atmospheric circulation. The amplitude of UV variability is uncertain, yet it directly affects the magnitude of the climate response: observations from the SOlar Radiation and Climate Experiment (SORCE) satellite show broadband changes up to three times larger than previous measurements. Here we present estimates of the stratospheric ozone variability during the solar cycle. Specifically, we estimate the photolytic response of stratospheric ozone to changes in spectral solar irradiance by calculating the dierence between a reference chemistry-climate model simulation of ozone variability driven only by transport (with no changes in solar irradiance) and observations of ozone concentrations. Subtracting the reference from simulations with time-varying irradiance, we can evaluate different data sets of measured and modelled spectral irradiance.We find that at altitudes above pressure levels of 5 hPa, the ozone response to solar variability simulated using the SORCE spectral solar irradiance data are inconsistent with the observations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DG - Atmospheric sciences, meteorology

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Geoscience

  • ISSN

    1752-0894

  • e-ISSN

  • Volume of the periodical

    2016

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    6

  • Pages from-to

    1-6

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84959527842