All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Similarity Search of Sparse Histograms on GPU Architecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10327984" target="_blank" >RIV/00216208:11320/16:10327984 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-46759-7_25" target="_blank" >http://dx.doi.org/10.1007/978-3-319-46759-7_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46759-7_25" target="_blank" >10.1007/978-3-319-46759-7_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Similarity Search of Sparse Histograms on GPU Architecture

  • Original language description

    Searching for similar objects within large-scale database is a hard problem due to the exponential increase of multimedia data. The time required to find the nearest objects to the specific query in a high-dimensional space has become a serious constraint of the searching algorithms. One of the possible solution for this problem is utilization of massively parallel platforms such as GPU architectures. This solution becomes very sensitive for the applications working with sparse dataset. The performance of the algorithm can be totally changed depending on the different sparsity settings of the input data. In this paper, we study four different approaches on the GPU architecture for finding the similar histograms to the given queries. The performance and efficiency of observed methods were studied on sparse dataset of half a million histograms. We summarize our empirical results and point out the optimal GPU strategy for sparse histograms with different sparsity settings.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-08916S" target="_blank" >GA15-08916S: Efficient subgraph discovery for petabyte-scale web analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Similarity Search and Applications

  • ISBN

    978-3-319-46758-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    325-338

  • Publisher name

    Springer International Publishing

  • Place of publication

    Switzerland

  • Event location

    Tokyo

  • Event date

    Oct 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article