All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feature Extraction and Malware Detection on Large HTTPS Data Using MapReduce

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10327990" target="_blank" >RIV/00216208:11320/16:10327990 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/16:00305565

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-46759-7_24" target="_blank" >http://dx.doi.org/10.1007/978-3-319-46759-7_24</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46759-7_24" target="_blank" >10.1007/978-3-319-46759-7_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feature Extraction and Malware Detection on Large HTTPS Data Using MapReduce

  • Original language description

    Secure HTTP network traffic represents a challenging immense data source for machine learning tasks. The tasks usually try to learn and identify infected network nodes, given only limited traffic features available for secure HTTP data. In this paper, we investigate the performance of grid histograms that can be used to aggregate traffic features of network nodes considering just 5-min batches for snapshots. We compare the representation using linear and k-NN classifiers. We also demonstrate that all presented feature extraction and classification tasks can be implemented in a scalable way using the MapReduce approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-08916S" target="_blank" >GA15-08916S: Efficient subgraph discovery for petabyte-scale web analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Similarity Search and Applications

  • ISBN

    978-3-319-46758-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    311-324

  • Publisher name

    Springer International Publishing

  • Place of publication

    Switzerland

  • Event location

    Tokyo

  • Event date

    Oct 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article