On smoothness of Tukey depth contours
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329015" target="_blank" >RIV/00216208:11320/16:10329015 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/02331888.2016.1145680" target="_blank" >http://dx.doi.org/10.1080/02331888.2016.1145680</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02331888.2016.1145680" target="_blank" >10.1080/02331888.2016.1145680</a>
Alternative languages
Result language
angličtina
Original language name
On smoothness of Tukey depth contours
Original language description
The smoothness of Tukey depth contours is a regularity condition often encountered in asymptotic theory, among others. This condition ensures that the Tukey depth fully characterizes the underlying multivariate probability distribution. In this paper we demonstrate that this regularity condition is rarely satisfied. It is shown that even well-behaved probability distributions with symmetrical, smooth and (strictly) quasi-concave densities may have non-smooth Tukey depth contours, and that the smoothness behaviour of depth contours is fairly unpredictable.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamic Models in Economics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Statistics
ISSN
0233-1888
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
1075-1085
UT code for WoS article
000381061300007
EID of the result in the Scopus database
2-s2.0-84961206044