Stability analysis of the ALE-STDGM for linear convection-diffusion-reaction problems in time-dependent domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329168" target="_blank" >RIV/00216208:11320/16:10329168 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-39929-4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-39929-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-39929-4_22" target="_blank" >10.1007/978-3-319-39929-4_22</a>
Alternative languages
Result language
angličtina
Original language name
Stability analysis of the ALE-STDGM for linear convection-diffusion-reaction problems in time-dependent domains
Original language description
In this paper we investigate the stability of the space-time discontinuous Galerkin method (STDGM) for the solution of nonstationary, linear convection-diffusion-reaction problem in time-dependent domains formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. At first we define the continuous problem and reformulate it using the ALE method, which replaces the classical partial time derivative with the so called ALE-derivative and an additional convective term. In the second part of the paper we discretize our problem using the space-time discontinuous Galerkin method. The space discretization uses piecewise polynomial approximations of degree $pgeq 1$, in time we use only piecewise linear discretization. Finally in the third part of the paper we present our results concerning the unconditional stability of the method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications ENUMATH 2015
ISBN
978-3-319-39927-0
ISSN
1439-7358
e-ISSN
—
Number of pages
9
Pages from-to
215-223
Publisher name
Springer
Place of publication
Switzerland
Event location
Ankara
Event date
Sep 14, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—