Anti-Path Cover on Sparse Graph Classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329666" target="_blank" >RIV/00216208:11320/16:10329666 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4204/EPTCS.233.8" target="_blank" >http://dx.doi.org/10.4204/EPTCS.233.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4204/EPTCS.233.8" target="_blank" >10.4204/EPTCS.233.8</a>
Alternative languages
Result language
angličtina
Original language name
Anti-Path Cover on Sparse Graph Classes
Original language description
We show that it is possible to use Bondy-Chvatal closure to design an FPT algorithm that decides whether or not it is possible to cover vertices of an input graph by at most k vertex disjoint paths in the complement of the input graph. More precisely, we show that if a graph has tree-width at most w and its complement is closed under Bondy-Chvatal closure, then it is possible to bound neighborhood diversity of the complement by a function of w only. A simpler proof where tree-depth is used instead of tree-width is also presented.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings 11th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2016)
ISBN
—
ISSN
2075-2180
e-ISSN
—
Number of pages
5
Pages from-to
82-86
Publisher name
EPTSC
Place of publication
Telč
Event location
Telč
Event date
Oct 21, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—