All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of algebraic flux correction schemes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330010" target="_blank" >RIV/00216208:11320/16:10330010 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/15M1018216" target="_blank" >http://dx.doi.org/10.1137/15M1018216</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/15M1018216" target="_blank" >10.1137/15M1018216</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of algebraic flux correction schemes

  • Original language description

    A family of algebraic flux correction (AFC) schemes for linear boundary value problems in any space dimension is studied. These methods' main feature is that they limit the fluxes along each one of the edges of the triangulation, and we suppose that the limiters used are symmetric. For an abstract problem, the existence of a solution, existence and uniqueness of the solution of a linearized problem, and an a priori error estimate are proved under rather general assumptions on the limiters. For a particular (but standard in practice) choice of the limiters, it is shown that a local discrete maximum principle holds. The theory developed for the abstract problem is applied to convection-diffusion-reaction equations, where in particular an error estimate is derived. Numerical studies show its sharpness.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Numerical Analysis

  • ISSN

    0036-1429

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    2427-2451

  • UT code for WoS article

    000385274300018

  • EID of the result in the Scopus database

    2-s2.0-84984941648