Analysis of algebraic flux correction schemes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330010" target="_blank" >RIV/00216208:11320/16:10330010 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/15M1018216" target="_blank" >http://dx.doi.org/10.1137/15M1018216</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/15M1018216" target="_blank" >10.1137/15M1018216</a>
Alternative languages
Result language
angličtina
Original language name
Analysis of algebraic flux correction schemes
Original language description
A family of algebraic flux correction (AFC) schemes for linear boundary value problems in any space dimension is studied. These methods' main feature is that they limit the fluxes along each one of the edges of the triangulation, and we suppose that the limiters used are symmetric. For an abstract problem, the existence of a solution, existence and uniqueness of the solution of a linearized problem, and an a priori error estimate are proved under rather general assumptions on the limiters. For a particular (but standard in practice) choice of the limiters, it is shown that a local discrete maximum principle holds. The theory developed for the abstract problem is applied to convection-diffusion-reaction equations, where in particular an error estimate is derived. Numerical studies show its sharpness.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
2427-2451
UT code for WoS article
000385274300018
EID of the result in the Scopus database
2-s2.0-84984941648