All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Regularization techniques in joinpoint regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330046" target="_blank" >RIV/00216208:11320/16:10330046 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/article/10.1007/s00362-016-0823-2?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst" target="_blank" >http://link.springer.com/article/10.1007/s00362-016-0823-2?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00362-016-0823-2" target="_blank" >10.1007/s00362-016-0823-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Regularization techniques in joinpoint regression

  • Original language description

    Joinpoint regression models are popular in various situations (modeling different trends in economics, mortality and incidence series or epidemiology studies and clinical trials). The literature on joinpoint regression mostly focuses on either the frequentist point of view, or discusses Bayesian approaches instead. A model selection step in all these scenarios considers only some limited set of alternatives, from which the final model is chosen. We present a different model estimation approach: the final model is selected out of all possible alternatives admitted by the data. We apply the L1L1-regularization idea and via the sparsity principle we identify significant joinpoint locations to construct the final model. Some theoretical results and practical examples are given as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Statistical Papers

  • ISSN

    0932-5026

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    17

  • Pages from-to

    939-955

  • UT code for WoS article

    000387849900006

  • EID of the result in the Scopus database

    2-s2.0-84988417402