New and updated convex shape models of asteroids based on optical data from a large collaboration network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330596" target="_blank" >RIV/00216208:11320/16:10330596 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1051/0004-6361/201527441" target="_blank" >http://dx.doi.org/10.1051/0004-6361/201527441</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201527441" target="_blank" >10.1051/0004-6361/201527441</a>
Alternative languages
Result language
angličtina
Original language name
New and updated convex shape models of asteroids based on optical data from a large collaboration network
Original language description
Context. Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. These efforts already provided deep insight into physical properties of main-belt asteroids or large collisional families. Going into finer detail (e.g., smaller collisional families, asteroids with sizes less than or similar to 20 km) requires knowledge of physical parameters of more objects. Aims. We aim to increase the number of asteroid shape models and rotation states. Such results provide important input for further studies, such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides bulk density estimates in combination with known masses, but also constrains theoretical collisional and evolutional models of the solar system. Methods. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that 100 observers who submit their optical data to publicly available databases. Results. We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature, or for which masses will most likely be determined from their gravitational influence on smaller bodies whose orbital deflections will be observed by the ESA Gaia astrometric mission. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and three near-Earth asteroids.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BN - Astronomy and celestial mechanics, astrophysics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-04816S" target="_blank" >GA15-04816S: A big picture of the main asteroid belt - physical properties of asteroids derived by inversion of optical and infrared photometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy and Astrophysics [online]
ISSN
1432-0746
e-ISSN
—
Volume of the periodical
586
Issue of the periodical within the volume
únor
Country of publishing house
PL - POLAND
Number of pages
24
Pages from-to
—
UT code for WoS article
000369715900119
EID of the result in the Scopus database
2-s2.0-84957564281