Distance constraint satisfaction problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331263" target="_blank" >RIV/00216208:11320/16:10331263 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ic.2015.11.010" target="_blank" >http://dx.doi.org/10.1016/j.ic.2015.11.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ic.2015.11.010" target="_blank" >10.1016/j.ic.2015.11.010</a>
Alternative languages
Result language
angličtina
Original language name
Distance constraint satisfaction problems
Original language description
We study the complexity of constraint satisfaction problems for templates Gamma over the integers where the relations are first-order definable from the successor function. In the case that Gamma is locally finite (i.e., the Gaifman graph of Gamma has finite degree), we show that Gamma is homomorphically equivalent to a structure with one of two classes of polymorphisms (which we call modular max and modular min) and the CSP for Gamma can be solved in polynomial time, or Gamma is homomorphically equivalent to a finite transitive structure, or the CSP for Gamma is NP-complete. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), this proves that those CSPs have a complexity dichotomy, that is, are either in P or NP-complete.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information and Computation
ISSN
0890-5401
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
247
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
87-105
UT code for WoS article
000372136400005
EID of the result in the Scopus database
2-s2.0-84954288234