The collapse of the bounded width hierarchy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331265" target="_blank" >RIV/00216208:11320/16:10331265 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/logcom/exu070" target="_blank" >http://dx.doi.org/10.1093/logcom/exu070</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exu070" target="_blank" >10.1093/logcom/exu070</a>
Alternative languages
Result language
angličtina
Original language name
The collapse of the bounded width hierarchy
Original language description
We show that every constraint satisfaction problem (CSP) over a fixed constraint language that has bounded relational width has also relational width (2,3). Together with known results this gives a trichotomy: a CSP has either relational width 1, or relational width (2,3) (and no smaller relational width), or does not have bounded relational width. A consequence of this result is that if Gamma is a finite constraint language containing relations of arity at most k, then the CSP over Gamma either cannot be solved by a Datalog program, or can be solved by a Datalog program consisting of rules with at most max{3, k} variables and at most 2 variables in the head.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
923-943
UT code for WoS article
000380252600004
EID of the result in the Scopus database
2-s2.0-84973379923