All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Big Match in Small Space (Extended Abstract)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331490" target="_blank" >RIV/00216208:11320/16:10331490 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-662-53354-3_6" target="_blank" >http://dx.doi.org/10.1007/978-3-662-53354-3_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-53354-3_6" target="_blank" >10.1007/978-3-662-53354-3_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Big Match in Small Space (Extended Abstract)

  • Original language description

    We study repeated games with absorbing states, a type of two-player, zero-sum concurrent mean-payoff games with the prototypical example being the Big Match of Gillete (1957). These games may not allow optimal strategies but they always have epsilon-optimal strategies. In this paper we design epsilon-optimal strategies for Player 1 in these games that use only O(log log T) space. Furthermore, we construct strategies for Player 1 that use space s(T), for an arbitrary small unbounded non-decreasing function s, and which guarantee an epsilon-optimal value for Player 1 in the limit superior sense. The previously known strategies use space Omega(log T) and it was known that no strategy can use constant space if it is epsilon-optimal even in the limit superior sense. We also give a complementary lower bound. Furthermore, we also show that no Markov strategy, even extended with finite memory, can ensure value greater than 0 in the Big Match, answering a question posed by Neyman [11].

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ALGORITHMIC GAME THEORY, SAGT 2016

  • ISBN

    978-3-662-53354-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    64-76

  • Publisher name

    SPRINGER INT PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Liverpool

  • Event date

    Sep 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389020400006