Online Knapsack Revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331546" target="_blank" >RIV/00216208:11320/16:10331546 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00224-014-9566-4" target="_blank" >http://dx.doi.org/10.1007/s00224-014-9566-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00224-014-9566-4" target="_blank" >10.1007/s00224-014-9566-4</a>
Alternative languages
Result language
angličtina
Original language name
Online Knapsack Revisited
Original language description
We investigate the online variant of the (Multiple) Knapsack Problem: an algorithm is to pack items, of arbitrary sizes and profits, in k knapsacks (bins) without exceeding the capacity of any bin. We study two objective functions: the sum and the maximum of profits over all bins. With either objective, our problem statement captures and generalizes previously studied problems, e.g. Dual Bin Packing [1, 6] in case of the sum and Removable Knapsack [10, 11] in case of the maximum. Following previous studies, we consider two variants, depending on whether the algorithm is allowed to remove items (forever) from its bins or not, and two special cases where the profit of an item is a function of its size, in addition to the general setting. We study both deterministic and randomized algorithms; for the latter, we consider both the oblivious and the adaptive adversary model. We classify each variant as either admitting O(1)-competitive algorithms or not. We develop simple O(1)-competitive algorithms for some cases of the max-objective variant believed to be intrac because only 1-bin deterministic algorithms were considered before.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10003S" target="_blank" >GA14-10003S: Restricted computations: Algorithms, models, complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
38
Pages from-to
153-190
UT code for WoS article
000367607000009
EID of the result in the Scopus database
2-s2.0-84952975971