Super-catastrophic disruption of asteroids at small perihelion distances
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331702" target="_blank" >RIV/00216208:11320/16:10331702 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1038/nature16934" target="_blank" >http://dx.doi.org/10.1038/nature16934</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/nature16934" target="_blank" >10.1038/nature16934</a>
Alternative languages
Result language
angličtina
Original language name
Super-catastrophic disruption of asteroids at small perihelion distances
Original language description
Most near-Earth objects came from the asteroid belt and drifted via non-gravitational thermal forces into resonant escape routes that, in turn, pushed them onto planet-crossing orbits(1-3). Models predict that numerous asteroids should be found on orbits that closely approach the Sun, but few have been seen. In addition, even though the near-Earth-object population in general is an even mix of low-albedo (less than ten per cent of incident radiation is reflected) and high-albedo (more than ten per cent of incident radiation is reflected) asteroids, the characterized asteroids near the Sun typically have high albedos(4). Here we report a quantitative comparison of actual asteroid detections and a near-Earth-object model (which accounts for observational selection effects). We conclude that the deficit of low-albedo objects near the Sun arises from the super-catastrophic breakup (that is, almost complete disintegration) of a substantial fraction of asteroids when they achieve perihelion distances of a few tens of solar radii. The distance at which destruction occurs is greater for smaller asteroids, and their temperatures during perihelion passages are too low for evaporation to explain their disappearance. Although both bright and dark (high-and low-albedo) asteroids eventually break up, we find that low-albedo asteroids are more likely to be destroyed farther from the Sun, which explains the apparent excess of high-albedo near-Earth objects and suggests that low-albedo asteroids break up more easily as a result of thermal effects.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BN - Astronomy and celestial mechanics, astrophysics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-01308S" target="_blank" >GA13-01308S: Dynamics of small bodies in the solar system</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature
ISSN
0028-0836
e-ISSN
—
Volume of the periodical
530
Issue of the periodical within the volume
7590
Country of publishing house
GB - UNITED KINGDOM
Number of pages
4
Pages from-to
303-306
UT code for WoS article
000370327100030
EID of the result in the Scopus database
2-s2.0-84959020371