All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DETECTION OF THE YORP EFFECT FOR SMALL ASTEROIDS IN THE KARIN CLUSTER

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331707" target="_blank" >RIV/00216208:11320/16:10331707 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3847/0004-6256/151/6/164" target="_blank" >http://dx.doi.org/10.3847/0004-6256/151/6/164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/0004-6256/151/6/164" target="_blank" >10.3847/0004-6256/151/6/164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DETECTION OF THE YORP EFFECT FOR SMALL ASTEROIDS IN THE KARIN CLUSTER

  • Original language description

    The Karin cluster is a young asteroid family thought to have formed only similar or equal to 5.75 Myr ago. The young age can be demonstrated by numerically integrating the orbits of Karin cluster members backward in time and showing the convergence of the perihelion and nodal longitudes (as well as other orbital elements). Previous work has pointed out that the convergence is not ideal if the backward integration only accounts for the gravitational perturbations from the solar system planets. It improves when the thermal radiation force known as the Yarkovsky effect is accounted for. This argument can be used to estimate the spin obliquities of the Karin cluster members. Here we take advantage of the fast growing membership of the Karin cluster and show that the obliquity distribution of diameter D similar or equal to 1-2 km Karin asteroids is bimodal, as expected if the YORP effect acted to move obliquities toward extreme values (0 or 180). The measured magnitude of the effect is consistent with the standard YORP model. The surface thermal conductivity is inferred to be 0.07-0.2 W m(-1) K-1 (thermal inertia similar or equal to 300-500 J m(-2)K(-1) S-1/2). We find that the strength of the YORP effect is roughly of the nominal strength obtained for a collection of random Gaussian spheroids. These results are consistent with a surface composed of rough, rocky regolith. The obliquity values predicted here for 480 members of the Karin cluster can be validated by the light-curve inversion method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BN - Astronomy and celestial mechanics, astrophysics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-01308S" target="_blank" >GA13-01308S: Dynamics of small bodies in the solar system</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomical Journal

  • ISSN

    0004-6256

  • e-ISSN

  • Volume of the periodical

    151

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000377990300031

  • EID of the result in the Scopus database

    2-s2.0-84975478256