All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On endomorphism monoids in varieties of bands

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331842" target="_blank" >RIV/00216208:11320/16:10331842 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/article/10.1007/s00012-016-0399-7" target="_blank" >http://link.springer.com/article/10.1007/s00012-016-0399-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-016-0399-7" target="_blank" >10.1007/s00012-016-0399-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On endomorphism monoids in varieties of bands

  • Original language description

    It will be proved that every non-trivial variety V of bands (idempotent semigroups) contains a proper generating class of non-isomorphic bands B such that B generates V and any band B' having the same endomorphism monoid as B is isomorphic to B or to the opposite band B^op. Consequently, every sharply greater band variety has a sharply greater class of endomorphism monoids.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

  • Volume of the periodical

    76

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    287-292

  • UT code for WoS article

    000384736900010

  • EID of the result in the Scopus database

    2-s2.0-84984879052