On Unsteady Internal Flows of Bingham Fluids Subject to Threshold Slip on the Impermeable Boundary
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332638" target="_blank" >RIV/00216208:11320/16:10332638 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-0348-0939-9_8" target="_blank" >http://dx.doi.org/10.1007/978-3-0348-0939-9_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-0348-0939-9_8" target="_blank" >10.1007/978-3-0348-0939-9_8</a>
Alternative languages
Result language
angličtina
Original language name
On Unsteady Internal Flows of Bingham Fluids Subject to Threshold Slip on the Impermeable Boundary
Original language description
In the analysis of weak solutions relevant to evolutionary flows of incompressible fluids with non-constant viscosity or with non-linear constitutive equation, it is in general an open question whether a globally integrable pressure exists if the flows are subject to no-slip boundary conditions. Here we overcome this deficiency by considering threshold boundary conditions stating that the fluid adheres to the boundary until certain critical value for the wall shear stress is reached. Once the wall shear stress exceeds this critical value, the fluid slips. The main ingredient in our approach is to look at this type of activated, stick-slip, boundary condition as an implicit constitutive equation on the boundary. We prove the long-time and large-data existence of weak solutions, with integrable pressure, to unsteady internal flows of Bingham and Navier-Stokes fluids subject to such threshold slip boundary conditions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Developments of Mathematical Fluid Mechanics
ISBN
978-3-0348-0938-2
ISSN
—
e-ISSN
—
Number of pages
22
Pages from-to
135-156
Publisher name
Birkhäuser Basel
Place of publication
Basel
Event location
Nara, Japan
Event date
Mar 5, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—