All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332792" target="_blank" >RIV/00216208:11320/16:10332792 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985815:_____/16:00463135

  • Result on the web

    <a href="http://dx.doi.org/10.3847/0004-637X/826/1/49" target="_blank" >http://dx.doi.org/10.3847/0004-637X/826/1/49</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/0004-637X/826/1/49" target="_blank" >10.3847/0004-637X/826/1/49</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

  • Original language description

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe I 617.3 nm and Ca II 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca II observations (with spatial and temporal resolutions of 0 4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20 degrees-60 degrees, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BN - Astronomy and celestial mechanics, astrophysics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-04338S" target="_blank" >GA14-04338S: Physical nature of sunspots</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

  • Volume of the periodical

    826

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

    000381962200049

  • EID of the result in the Scopus database

    2-s2.0-84979591066