All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Hardness of Switching to a Small Number of Edges

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333131" target="_blank" >RIV/00216208:11320/16:10333131 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-42634-1_13" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42634-1_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-42634-1_13" target="_blank" >10.1007/978-3-319-42634-1_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Hardness of Switching to a Small Number of Edges

  • Original language description

    Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other one by a sequence of switches. Jelinkova et al. [DMTCS 13, no. 2, 2011] presented a proof that it is NP-complete to decide if the input graph can be switched to contain at most a given number of edges. There turns out to be a flaw in their proof. We present a correct proof. Furthermore, we prove that the problem remains NP-complete even when restricted to graphs whose density is bounded from above by an arbitrary fixed constant. This partially answers a question of Matou. sek and Wagner [Discrete Comput. Geom. 52, no. 1, 2014].

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    COMPUTING AND COMBINATORICS, COCOON 2016

  • ISBN

    978-3-319-42633-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    159-170

  • Publisher name

    SPRINGER INT PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Ho Chi Minh City

  • Event date

    Aug 2, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389726400013