All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fischer decomposition for osp(4|2)-monogenics in quaternionic Clifford analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333234" target="_blank" >RIV/00216208:11320/16:10333234 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mma.3910" target="_blank" >http://dx.doi.org/10.1002/mma.3910</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mma.3910" target="_blank" >10.1002/mma.3910</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fischer decomposition for osp(4|2)-monogenics in quaternionic Clifford analysis

  • Original language description

    Spaces of spinor-valued homogeneous polynomials, and in particular spaces of spinor-valued spherical harmonics, are decomposed in terms of irreducible representations of the symplectic group Sp(p). These Fischer decompositions involve spaces of homogeneous, so-called osp(4|2)-monogenic polynomials, the Lie super algebra osp(4|2) being the Howe dual partner to the symplectic group Sp(p). In order to obtain Sp(p)-irreducibility, this new concept of osp(4|2)-monogenicity has to be introduced as a refinement of quaternionic monogenicity; it is defined by means of the four quaternionic Dirac operators, a scalar Euler operator E underlying the notion of symplectic harmonicity and a multiplicative Clifford algebra operator P underlying the decomposition of spinor space into symplectic cells. These operators E and P, and their Hermitian conjugates, arise naturally when constructing the Howe dual pair osp(4|2)xSp(p), the action of which will make the Fischer decomposition multiplicity free.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Methods in the Applied Sciences

  • ISSN

    0170-4214

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    4874-4891

  • UT code for WoS article

    000385719500020

  • EID of the result in the Scopus database

    2-s2.0-84963823269