Fischer decomposition for osp(4|2)-monogenics in quaternionic Clifford analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333234" target="_blank" >RIV/00216208:11320/16:10333234 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mma.3910" target="_blank" >http://dx.doi.org/10.1002/mma.3910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.3910" target="_blank" >10.1002/mma.3910</a>
Alternative languages
Result language
angličtina
Original language name
Fischer decomposition for osp(4|2)-monogenics in quaternionic Clifford analysis
Original language description
Spaces of spinor-valued homogeneous polynomials, and in particular spaces of spinor-valued spherical harmonics, are decomposed in terms of irreducible representations of the symplectic group Sp(p). These Fischer decompositions involve spaces of homogeneous, so-called osp(4|2)-monogenic polynomials, the Lie super algebra osp(4|2) being the Howe dual partner to the symplectic group Sp(p). In order to obtain Sp(p)-irreducibility, this new concept of osp(4|2)-monogenicity has to be introduced as a refinement of quaternionic monogenicity; it is defined by means of the four quaternionic Dirac operators, a scalar Euler operator E underlying the notion of symplectic harmonicity and a multiplicative Clifford algebra operator P underlying the decomposition of spinor space into symplectic cells. These operators E and P, and their Hermitian conjugates, arise naturally when constructing the Howe dual pair osp(4|2)xSp(p), the action of which will make the Fischer decomposition multiplicity free.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
16
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
4874-4891
UT code for WoS article
000385719500020
EID of the result in the Scopus database
2-s2.0-84963823269