Equivariant differential operators on spinors in conformal geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333941" target="_blank" >RIV/00216208:11320/16:10333941 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/17476933.2016.1234461" target="_blank" >http://dx.doi.org/10.1080/17476933.2016.1234461</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17476933.2016.1234461" target="_blank" >10.1080/17476933.2016.1234461</a>
Alternative languages
Result language
angličtina
Original language name
Equivariant differential operators on spinors in conformal geometry
Original language description
We present a novel approach to the classification of conformally equivariant differential operators on spinors in the case of homogeneous conformal geometry. It is based on the classification of solutions for a vector-valued system of partial differential equations, associated to D-modules for the homogeneous conformal structure and controlled by the spin Howe duality for the orthogonal Lie algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Variables and Elliptic Equations [online]
ISSN
1747-6941
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
2
Country of publishing house
VE - THE BOLIVARIAN REPUBLIC OF VENEZUELA
Number of pages
17
Pages from-to
1-17
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84987904664