Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333946" target="_blank" >RIV/00216208:11320/16:10333946 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00006-016-0696-4" target="_blank" >http://dx.doi.org/10.1007/s00006-016-0696-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-016-0696-4" target="_blank" >10.1007/s00006-016-0696-4</a>
Alternative languages
Result language
angličtina
Original language name
Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator
Original language description
In the present article we study basic aspects of the symplectic version of Clifford analysis associated to the symplectic Dirac operator. Focusing mostly on the symplectic vector space of real dimension 2, this involves the analysis of first order symmetry operators, symplectic Clifford-Fourier transform, reproducing kernel for the symplectic Fischer product and the construction of bases of symplectic monogenics for the symplectic Dirac operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
30
Pages from-to
1-30
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84974831599