All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334597" target="_blank" >RIV/00216208:11320/16:10334597 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21110/16:00235797

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.camwa.2016.01.006" target="_blank" >http://dx.doi.org/10.1016/j.camwa.2016.01.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2016.01.006" target="_blank" >10.1016/j.camwa.2016.01.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants

  • Original language description

    One of the popular methods for numerical solution of partial differential equations with uncertain data is the stochastic Galerkin method, where function spaces used for discretized problems are tensor products of finite element spaces of spatial variables and of sets of polynomials of random variables. Related systems of linear equations are thus usually huge. Studying relations between subspaces of the solution spaces is important for obtaining efficient preconditioning. For a hierarchy of polynomials of random variables we introduce upper bounds to the strengthened Cauchy-Bunyakowsky-Schwarz (CBS) constants with respect to the scalar product defined by the operator of the weak form of the underlying equation. Small values of the CBS constant indicate that certain additive or multiplicative two-by-two block preconditioners reduce enough the condition number of the system. Moreover, we show that a recursive multiplicative two-by-two block preconditioning can be used, resulting in the algebraic multilevel iterative (AMLI) method. We present the conditions under which the AMLI preconditioning is of an optimal order. Numerical experiments confirm the introduced theoretical estimates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers and Mathematics with Applications

  • ISSN

    0898-1221

  • e-ISSN

  • Volume of the periodical

    71

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    949-964

  • UT code for WoS article

    000371940000005

  • EID of the result in the Scopus database

    2-s2.0-84956860005