Homotopy derivations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334612" target="_blank" >RIV/00216208:11320/16:10334612 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s40062-015-0118-7" target="_blank" >http://dx.doi.org/10.1007/s40062-015-0118-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40062-015-0118-7" target="_blank" >10.1007/s40062-015-0118-7</a>
Alternative languages
Result language
angličtina
Original language name
Homotopy derivations
Original language description
We define a strong homotopy derivation of (cohomological) degree k of a strong homotopy algebra over an operad . This involves resolving the operad obtained from by adding a generator with "derivation relations". For a wide class of Koszul operads , in particular and , we describe the strong homotopy derivations by coderivations and show that they are closed under the Lie bracket. We show that symmetrization of a strong homotopy derivation of an algebra yields a strong homotopy derivation of the symmetrized algebra. We give examples of strong homotopy derivations generalizing inner derivations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP13-27340P" target="_blank" >GP13-27340P: Zobecněné operády</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal Of Homotopy And Related Structures
ISSN
2193-8407
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
GE - GEORGIA
Number of pages
32
Pages from-to
599-630
UT code for WoS article
000382706300010
EID of the result in the Scopus database
2-s2.0-84984608963