All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convergence to equilibrium for solutions of an abstract wave equation with general damping function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335074" target="_blank" >RIV/00216208:11320/16:10335074 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jde.2015.10.003" target="_blank" >http://dx.doi.org/10.1016/j.jde.2015.10.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2015.10.003" target="_blank" >10.1016/j.jde.2015.10.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convergence to equilibrium for solutions of an abstract wave equation with general damping function

  • Original language description

    We prove convergence to a stationary solution as time goes to infinity of solutions to abstract nonlinear wave equation with general damping term and gradient nonlinearity, provided the trajectory is precompact. The energy is supposed to satisfy a Kurdyka-Lojasiewicz gradient inequality. Our aim is to formulate conditions on the function g as general as possible when the damping is a scalar multiple of the velocity, and this scalar depends on the norm of the velocity, g(vertical bar u(t)vertical bar)u(t). These turn out to be estimates and a coupling condition with the energy but not global monotonicity. When the damping is more general, we need an angle condition.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    260

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    2259-2274

  • UT code for WoS article

    000373536500010

  • EID of the result in the Scopus database

    2-s2.0-84950159929