Optimal Orlicz domains in Sobolev embeddings into Marcinkiewicz spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335142" target="_blank" >RIV/00216208:11320/16:10335142 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2016.01.019" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2016.01.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2016.01.019" target="_blank" >10.1016/j.jfa.2016.01.019</a>
Alternative languages
Result language
angličtina
Original language name
Optimal Orlicz domains in Sobolev embeddings into Marcinkiewicz spaces
Original language description
In this paper we present a method for determining whether there exists a largest Orlicz space L^A(Ω) satisfying the Sobolev embedding W^m L^A(Ω) RIGHTWARDS ARROW Y(Ω) where Y(Ω) stands for an arbitrary so-called Marcinkiewicz endpoint space. The tool developed in this work enables us to investigate the optimality of Orlicz domain spaces in Sobolev embeddings and also in Sobolev trace embeddings on domains Ω in R^n with various regularity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
270
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
2653-2690
UT code for WoS article
000372212200010
EID of the result in the Scopus database
2-s2.0-84959253379