Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335144" target="_blank" >RIV/00216208:11320/16:10335144 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/16:33159341 RIV/68378271:_____/16:00464031
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevD.93.122005" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.93.122005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.93.122005" target="_blank" >10.1103/PhysRevD.93.122005</a>
Alternative languages
Result language
angličtina
Original language name
Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory
Original language description
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy-corrected for geometrical effects-is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BF - Elementary particle theory and high energy physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW D
ISSN
2470-0010
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
93
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
000377805900002
EID of the result in the Scopus database
2-s2.0-84976426647