Modular envelopes, OSFT and nonsymmetric (non-Sigma) modular operads
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335227" target="_blank" >RIV/00216208:11320/16:10335227 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/JNCG/248" target="_blank" >http://dx.doi.org/10.4171/JNCG/248</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JNCG/248" target="_blank" >10.4171/JNCG/248</a>
Alternative languages
Result language
angličtina
Original language name
Modular envelopes, OSFT and nonsymmetric (non-Sigma) modular operads
Original language description
Our aim is to introduce and advocate non-Sigma (non-symmetric) modular operads. While ordinary modular operads were inspired by the structure of the moduli space of stable complex curves, non-Sigma modular operads model surfaces with open strings outputs. An immediate application of our theory is a short proof that the modular envelope of the associative operad is the linearization of the terminal operad in the category of non-Sigma modular operads. This gives a succinct description of this object that plays an important role in open string field theory. We also sketch further perspectives of the presented approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Noncommutative Geometry
ISSN
1661-6952
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
35
Pages from-to
775-809
UT code for WoS article
000386878200012
EID of the result in the Scopus database
2-s2.0-84976504781