Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335556" target="_blank" >RIV/00216208:11320/16:10335556 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevD.93.044015" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.93.044015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.93.044015" target="_blank" >10.1103/PhysRevD.93.044015</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole
Original language description
We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a spinning particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-supplementary-condition. The fluxes are computed, for the first time, by solving the 2 + 1 Teukolsky equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by M the black hole mass and by mu the particle mass, we cover dimensionless background spins a/M = (0, +/- 0.9) and dimensionless particle spins -0.9 <= S/mu(2) <= +0.9. Our results span orbits of Boyer-Lindquist coordinate radii 4 <= r/M <= 30; notably, we investigate the strong-field regime, in some cases even beyond the last-stable-orbit. We compare our numerical results for the gravitational wave fluxes with the 2.5th order accurate post-Newtonian (PN) prediction obtained analytically by Tanaka et al. [Phys. Rev. D 54, 3762 ( 1996)]: we find an unambiguous trend of the PN-prediction toward the numerical results when r is large. At r/M = 30 the fractional agreement between the full numerical flux, approximated as the sum over the modes m = 1, 2, 3, and the PN prediction is less than or similar to 0.5% in all cases tested. This is close to our fractional numerical accuracy (similar to 0.2%). For smaller radii, the agreement between the 2.5PN prediction and the numerical result progressively deteriorates, as expected. Our numerical data will be essential to develop suitably resummed expressions of PN-analytical fluxes in order to improve their accuracy in the strong-field regime.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10625S" target="_blank" >GA14-10625S: General relativistic fields of compact astrophysical sources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW D
ISSN
2470-0010
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000369437100004
EID of the result in the Scopus database
2-s2.0-84959493293