Creating Hybrid Dependency Parsers for Syntax-Based MT
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335587" target="_blank" >RIV/00216208:11320/16:10335587 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/book/10.1007%2F978-3-319-21311-8" target="_blank" >http://link.springer.com/book/10.1007%2F978-3-319-21311-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-21311-8" target="_blank" >10.1007/978-3-319-21311-8</a>
Alternative languages
Result language
angličtina
Original language name
Creating Hybrid Dependency Parsers for Syntax-Based MT
Original language description
Dependency parsers are almost ubiquitously evaluated on their accuracy scores, these scores say nothing of the complexity and usefulness of the resulting structures. As dependency parses are basic structures in which other systems are built upon, it would seem more reasonable to judge these parsers down the NLP pipeline. In this chapter, we will discuss how different forms and different hybrid combinations of dependency parses effect the overall output of Syntax-Based machine translation both through automatic and manual evaluation. We show results from a variety of individual parsers, including dependency and constituent parsers, and describe multiple ensemble parsing techniques with their overall effect on the Machine Translation system. We show that parsers' UAS scores are more correlated to the NIST evaluation metric than to the BLEU Metric, however we see increases in both metrics. To truly see the effect of hybrid dependency parsers on machine translation, we will describe and evaluate a combine
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
AI - Linguistics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LM2015071" target="_blank" >LM2015071: Language Research Infrastructure in the Czech Republic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Hybrid Approaches to Machine Translation
ISBN
978-3-319-21310-1
Number of pages of the result
30
Pages from-to
161-190
Number of pages of the book
205
Publisher name
Springer International Publishing
Place of publication
Switzerland
UT code for WoS chapter
—