All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Light Transport Simulation via Metropolised Bidirectional Estimators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10336454" target="_blank" >RIV/00216208:11320/16:10336454 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/2980179.2982411" target="_blank" >http://dx.doi.org/10.1145/2980179.2982411</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2980179.2982411" target="_blank" >10.1145/2980179.2982411</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Light Transport Simulation via Metropolised Bidirectional Estimators

  • Original language description

    Efficiently simulating light transport in various scenes with a single algorithm is a difficult and important problem in computer graphics. Two major issues have been shown to hinder the efficiency of the existing solutions: light transport due to multiple highly glossy or specular interactions, and scenes with complex visibility between the camera and light sources. While recent bidirectional path sampling methods such as vertex connection and merging/unified path sampling (VCM/UPS) efficiently deal with highly glossy or specular transport, they tend to perform poorly in scenes with complex visibility. On the other hand, Markov chain Monte Carlo (MCMC) methods have been able to show some excellent results in scenes with complex visibility, but they behave unpredictably in scenes with glossy or specular surfaces due to their fundamental issue of sample correlation. In this paper, we show how to fuse the underlying key ideas behind VCM/UPS and MCMC into a single, efficient light transport solution. Our algorithm is specifically designed to retain the advantages of both approaches, while alleviating their limitations. Our experiments show that the algorithm can efficiently render scenes with both highly glossy or specular materials and complex visibility, without compromising the performance in simpler cases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA16-18964S" target="_blank" >GA16-18964S: Adaptive sampling and Markov chain Monte Carlo methods in light transport simulation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACM Transactions on Graphics

  • ISSN

    0730-0301

  • e-ISSN

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000388446200087

  • EID of the result in the Scopus database