OPTIMAL SOBOLEV TRACE EMBEDDINGS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10337160" target="_blank" >RIV/00216208:11320/16:10337160 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/tran/6606" target="_blank" >http://dx.doi.org/10.1090/tran/6606</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/6606" target="_blank" >10.1090/tran/6606</a>
Alternative languages
Result language
angličtina
Original language name
OPTIMAL SOBOLEV TRACE EMBEDDINGS
Original language description
Optimal target spaces are exhibited in arbitrary-order Sobolev type embeddings for traces of n-dimensional functions on lower dimensional subspaces. Sobolev spaces built upon any rearrangement-invariant norm are allowed. A key step in our approach consists of showing that any trace embedding can be reduced to a one-dimensional inequality for a Hardy type operator depending only on n and on the dimension of the relevant subspace. This can be regarded as an analogue for trace embeddings of a well-known symmetrization principle for first-order Sobolev embeddings for compactly supported functions. The stability of the optimal target space under iterations of Sobolev trace embeddings is also established and is part of the proof of our reduction principle. As a consequence, we derive new trace embeddings, with improved (optimal) target spaces, for classical Sobolev, Lorentz-Sobolev and Orlicz-Sobolev spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
368
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
8349-8382
UT code for WoS article
000385432600002
EID of the result in the Scopus database
—