All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ALADIN: A New Approach for Drug--Target Interaction Prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360926" target="_blank" >RIV/00216208:11320/17:10360926 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-71246-8_20" target="_blank" >http://dx.doi.org/10.1007/978-3-319-71246-8_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-71246-8_20" target="_blank" >10.1007/978-3-319-71246-8_20</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ALADIN: A New Approach for Drug--Target Interaction Prediction

  • Original language description

    Due to its pharmaceutical applications, one of the most prominent machine learning challenges in bioinformatics is the prediction of drug-target interactions. State-of-the-art approaches are based on various techniques, such as matrix factorization, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we extend BLM by the incorporation of a hubness-aware regression technique coupled with an enhanced representation of drugs and targets in a multi-modal similarity space. Additionally, we propose to build a projection-based ensemble. Our Advanced Local Drug-Target Interaction Prediction technique (ALADIN) is evaluated on publicly available realworld drug-target interaction datasets. The results show that our approach statistically significantly outperforms BLM-NII, a recent version of BLM, as well as NetLapRLS and WNN-GIP.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases

  • ISBN

    978-3-319-71246-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    16

  • Pages from-to

    322-337

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    SKOPJE, MACEDONIA

  • Event date

    Sep 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article