Time discretizations for evolution problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10361048" target="_blank" >RIV/00216208:11320/17:10361048 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/AM.2017.0268-16" target="_blank" >http://dx.doi.org/10.21136/AM.2017.0268-16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2017.0268-16" target="_blank" >10.21136/AM.2017.0268-16</a>
Alternative languages
Result language
angličtina
Original language name
Time discretizations for evolution problems
Original language description
The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
35
Pages from-to
135-169
UT code for WoS article
000400889400003
EID of the result in the Scopus database
2-s2.0-85015700305