Score tests for covariate effects in conditional copulas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10365991" target="_blank" >RIV/00216208:11320/17:10365991 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0047259X17302683" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0047259X17302683</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2017.05.001" target="_blank" >10.1016/j.jmva.2017.05.001</a>
Alternative languages
Result language
angličtina
Original language name
Score tests for covariate effects in conditional copulas
Original language description
Abstract We consider copula modeling of the dependence between two or more random variables in the presence of a multivariate covariate. The dependence parameter of the conditional copula possibly depends on the value of the covariate vector. In this paper we develop a new testing methodology for some important parametric specifications of this dependence parameter: constant, linear, quadratic, etc. in the covariate values, possibly after transformation with a link function. The margins are left unspecified. Our novel methodology opens plenty of new possibilities for testing how the conditional copula depends on the multivariate covariate and also for variable selection in copula model building. The suggested test is based on a Rao-type score statistic and regularity conditions are given under which the test has a limiting chi-square distribution under the null hypothesis. For small and moderate sample sizes, a permutation procedure is suggested to assess significance. In simulations it is shown that the test performs well (even under misspecification of the copula family and/or the dependence parameter structure) in comparison to available tests designed for testing for constancy of the dependence parameter. The test is illustrated on a real data set on concentrations of chemicals in water samples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GJ15-04774Y" target="_blank" >GJ15-04774Y: Using copulas for modelling dependency structure of variables in the presence of covariates</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Volume of the periodical
159
Issue of the periodical within the volume
2017
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
111-133
UT code for WoS article
000405976900007
EID of the result in the Scopus database
2-s2.0-85019961792