A Direct Proof of the Strong Hanani-Tutte Theorem on the Projective Plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366184" target="_blank" >RIV/00216208:11320/17:10366184 - isvavai.cz</a>
Result on the web
<a href="http://jgaa.info/getPaper?id=445" target="_blank" >http://jgaa.info/getPaper?id=445</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7155/jgaa.00445" target="_blank" >10.7155/jgaa.00445</a>
Alternative languages
Result language
angličtina
Original language name
A Direct Proof of the Strong Hanani-Tutte Theorem on the Projective Plane
Original language description
We reprove the strong Hanani-Tutte theorem on the projective plane. In contrast to the previous proof by Pelsmajer, Schaefer and Stasi, our method is constructive and does not rely on the characterization of forbidden minors, which gives hope to extend it to other surfaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Algorithms and Applications
ISSN
1526-1719
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
939-981
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85037376935