Comparing MapReduce-Based k-NN Similarity Joins On Hadoop For High-dimensional Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366491" target="_blank" >RIV/00216208:11320/17:10366491 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-69179-4_5" target="_blank" >http://dx.doi.org/10.1007/978-3-319-69179-4_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-69179-4_5" target="_blank" >10.1007/978-3-319-69179-4_5</a>
Alternative languages
Result language
angličtina
Original language name
Comparing MapReduce-Based k-NN Similarity Joins On Hadoop For High-dimensional Data
Original language description
Similarity joins represent a useful operator for data mining, data analysis and data exploration applications. With the exponential growth of data to be analyzed, distributed approaches like MapReduce are required. So far, the state-of-the-art similarity join approaches based on MapReduce mainly focused on the processing of vector data with less than one hundred dimensions. In this paper, we revisit and investigate the performance of different MapReduce-based approximate k-NN similarity join approaches on Apache Hadoop for large volumes of high-dimensional vector data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-08916S" target="_blank" >GA15-08916S: Efficient subgraph discovery for petabyte-scale web analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advanced Data Mining and Applications
ISBN
978-3-319-69178-7
ISSN
0302-9743
e-ISSN
neuvedeno
Number of pages
13
Pages from-to
63-75
Publisher name
Springer
Place of publication
Berlin
Event location
Singapore
Event date
Nov 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—