All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparing MapReduce-Based k-NN Similarity Joins On Hadoop For High-dimensional Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366491" target="_blank" >RIV/00216208:11320/17:10366491 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-69179-4_5" target="_blank" >http://dx.doi.org/10.1007/978-3-319-69179-4_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-69179-4_5" target="_blank" >10.1007/978-3-319-69179-4_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparing MapReduce-Based k-NN Similarity Joins On Hadoop For High-dimensional Data

  • Original language description

    Similarity joins represent a useful operator for data mining, data analysis and data exploration applications. With the exponential growth of data to be analyzed, distributed approaches like MapReduce are required. So far, the state-of-the-art similarity join approaches based on MapReduce mainly focused on the processing of vector data with less than one hundred dimensions. In this paper, we revisit and investigate the performance of different MapReduce-based approximate k-NN similarity join approaches on Apache Hadoop for large volumes of high-dimensional vector data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-08916S" target="_blank" >GA15-08916S: Efficient subgraph discovery for petabyte-scale web analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advanced Data Mining and Applications

  • ISBN

    978-3-319-69178-7

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Number of pages

    13

  • Pages from-to

    63-75

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Singapore

  • Event date

    Nov 5, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article