On strong optimality of interval linear programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366788" target="_blank" >RIV/00216208:11320/17:10366788 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11590-016-1088-3" target="_blank" >http://dx.doi.org/10.1007/s11590-016-1088-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11590-016-1088-3" target="_blank" >10.1007/s11590-016-1088-3</a>
Alternative languages
Result language
angličtina
Original language name
On strong optimality of interval linear programming
Original language description
We consider a linear programming problem with interval data. We discuss the problem of checking whether a given solution is optimal for each realization of interval data. This problem was studied for particular forms of linear programming problems. Herein, we extend the results to a general model and simplify the overall approach. Moreover, we inspect computational complexity, too. Eventually, we investigate a related optimality concept of semi-strong optimality, showing its characterization and complexity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GA13-10660S" target="_blank" >GA13-10660S: Interval methods for optimization problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optimization Letters [online]
ISSN
1862-4480
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
1459-1468
UT code for WoS article
000411114300019
EID of the result in the Scopus database
2-s2.0-84991660370